搜索

導航

本科課程輔導

當前位置:首頁 > 留學生課程輔導 > 留學生課程輔導 > 本科課程輔導 > 哥倫比亞大學線性代數課程輔導

哥倫比亞大學線性代數課程輔導

發布時間:2022-12-27 13:45

線性代數,處理向量和矩陣的數學學科,更廣泛地說,處理向量空間和線性變換的數學學科。與數學的其他部分經常被新思想和未解決的問題所振奮不同,線性代數是非常好理解的。它的價值在于它的許多應用,從數學物理學到現代代數和編碼理論。

本科課程輔導本科課程輔導

一、向量和向量空間

線性代數通常從研究矢量開始,矢量被理解為既有大小又有方向的量。矢量很容易被用于物理應用。例如,考慮一個可以在任何方向自由移動的固體物體。當兩個力同時作用在這個物體上時,它們產生的綜合效應與一個力是一樣的。為了說明這一點,將兩個力v和w表示為箭頭;每個箭頭的方向表示力的方向,其長度表示力的大小。

二、線性變換和矩陣

矢量空間是線性代數的兩個主要成分之一,另一個是線性變換(或物理學家口中的 "算子")。線性變換是將一個矢量發送到或 "映射 "到另一個矢量的函數。最簡單的線性變換的例子是將每個向量發送到c乘以自身,其中c是某個常數。因此,每個向量都保持相同的方向,但所有長度都乘以c。另一個例子是旋轉,它使所有長度保持不變,但改變了向量的方向。線性指的是變換保留了矢量加法和標量乘法的事實。這意味著,如果T是一個將向量v發送到T(v)的線性變換,那么對于任何向量v和w,以及任何標量c,該變換必須滿足T(v+w)=T(v)+T(w)和T(cv)=cT(v)的特性。

三、特征向量

在研究線性變換時,找到方向不被變換影響的非零向量是非常有用的。這些被稱為特征向量(也被稱為特性向量)。如果v是線性變換T的一個特征向量,那么T(v)=λv,對于某個標量λ,這個標量被稱為特征值。最大絕對值的特征值,連同其相關的特征向量,對許多物理應用具有特殊意義。這是因為,無論線性變換所代表的是什么過程,往往都是重復作用--將上一個變換的輸出反饋到另一個變換中--這導致每個任意(非零)矢量都收斂在與最大特征值相關的特征向量上,盡管是按特征值的冪數重新調整。換句話說,系統的長期行為是由其特征向量決定的。

以上就是關于哥倫比亞大學線性代數課程輔導的講解,大家在留學期間有任何留學需求可以添加留學生輔導網老師的微信:hmkt131

相關熱詞搜索: 本科課程輔導

主站蜘蛛池模板: 热re99久久精品国99热| 888米奇在线视频四色| 狼群视频在线观看www| 在线观看免费成人| 亚洲处破女AV日韩精品| 国产激情视频在线观看首页 | 大美女啪啪污污网站| 亚洲理论片在线观看| 一级试看120秒视频| 日本边摸边吃奶边做很爽视频 | 国产经典三级在线| 亚洲a级片在线观看| 韩国伦理电影我妻子的秘密| 成人网站在线进入爽爽爽| 伊人色综合久久天天| 2019av在线视频| 日韩一区二区视频在线观看| 十七岁高清在线观看| 99久久99久久久99精品齐| 欧美sss视频| 国产aa免费视频| 99热这里只有精品免费播放| 欧洲a老妇女黄大片| 四虎影视永久免费观看| 99在线精品视频在线观看| 校园春色另类小说| 国产一区二区三区不卡在线观看| A∨变态另类天堂无码专区| 极品丰满美女国模冰莲大尺度| 国产一级淫片视频免费看| av无码免费看| 最新精品亚洲成a人在线观看| 国产69精品久久久久999小说| 91视频免费观看| 日本深夜福利19禁在线播放| 免费一级欧美大片视频在线| 欧美性狂猛bbbbbxxxxx| 性之道在线观看| 亚洲国产夜色在线观看| 老师白妇少洁王局长| 国产色无码精品视频免费|